
Drupal Security:
The Cheat Sheet

(for Drupal 7.x)

Guard session IDs as much as possible. Do not print them
into a page or send them as part of an AJAX request.

Common pitfalls

Never pass in an array of input directly into a query. Let
the database layer convert the array into placeholders for
you:
Bad
db_query("SELECT t.s FROM {table} t WHERE
t.field IN (%s)", implode(',', $user_array));

Good
db_query('SELECT t.s FROM {table}
IN(:user_array)', array(':user_array' =>
array(1, 2, 3)));

Whenever you are displaying content from a query to
a user, use a dynamic query and tag it with the
appropriate tag to make sure access checking is
done.

Bad
$result = db_query('SELECT title FROM {node}
n WHERE ...');

Good
$query = db_select('node', 'n');
$result = $query
 ->fields('n', array('title'))
 ->condition(...)
 ->addTag('node_access');

Titles (node, block, page...), watchdog messages, form
element titles and descriptions must be escaped.

Menu items, breadcrumbs, block descriptions, link titles
passed into l(), and output from theme('username') are
already escaped for you.

Never rely only on client-side (JavaScript) validation;
always have server-side code performing final checks.

When in doubt, look at what core does. Or just escape
regardless to be safe.

Golden rules
- Input is the root of all evil.
- Drupal does not filter user input; it stores exactly what the
user typed.
- It is your responsibility to filter user data when it is
displayed.

Types of security issues

- SQL injection: Allows the modification of SQL queries to
bypass access control, destroy data, etc. Use db_query with
proper place-holders.

- Access Bypass: Proper access checking is not performed;
allows unauthorized users access to administrative functions
by manipulating URLs, for example. Remember to use
user_access, node_access, etc. appropriately

- Cross-Site Scripting (XSS): Allows the injection of
unfiltered HTML, including JavaScript that can be used to
steal cookie data, intercept user input, etc. Properly filter
user input with check_plain and friends.

- Arbitrary code execution: The most critical of all; PHP
code can be directly embedded by a malicious user.
Destruction is limited only by the user under whom PHP is
running. Properly filter user input with check_plain and
friends

Lullabot loves you.

Displaying user input

filter_xss_admin($string)
Very permissive XSS/HTML filter for admin-only use.
print filter_xss_admin($forum->description);

check_markup($text, $format_id, $langcode, $cache)
Run filters on a piece of text.
print check_markup($user->signature);

check_url($url)
Strip out harmful protocols in URLs.
print '';

check_plain($text)
Convert special characters to plain text.
print '<p>'. check_plain($node->title) .'</
p>';

Working with t() placeholders

%example
text is run through drupal_placeholder(), which in turn
runs check_plain().
$output = t('The user %name has just
registered.', array('%name' => $user-
>name));

Outputs: The user fred has just registere

!example
text is displayed as-is with no filtering; normally you
should NOT use this unless output is being used for e-mail
only.$output = t('View this full post at !
url'), array('!url' => 'http://
www.example.com/');

Outputs: View this full post at http://www.example.com/

@example
text is run through check_plain().
$output = t('There are currently @count
users online.', array('@count' =>
$countvar));

Outputs: There are currently 9 users online

Always use placeholders in queries and never insert
variables directly.

Bad
db_query(“SELECT column FROM {table} WHERE
string = '$string' and number = $number”);

Good
db_query(“SELECT column FROM {table} WHERE
title = :title and id = :id”, array(
 ':title' => $string,
 ':id' => $number
));

Writing safe SQL queries

Resources

OWASP Testing Project: http://www.owasp.org/index.php/
OWASP_Testing_Project

XSS Cheat Sheet: http://ha.ckers.org/xss.html

Security announcements: http://drupal.org/security

Writing secure code: http://drupal.org/writing-secure-code

http://www.owasp.org/index.php/OWASP_Testing_Project
http://www.owasp.org/index.php/OWASP_Testing_Project
http://ha.ckers.org/xss.html
http://drupal.org/security
http://drupal.org/writing-secure-code

